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Abstract. We analyse the finite-size scaling of two-dimensional /(1) lattice gauge theories
with a #-term interaction. The finite-size corrections to the specific heat, Binder—Landan and
Uy cumulants agree with the expected asymptotic behaviour for first-order phase transitions,
However, we find that the leading correction to the position of the extremal peoints of these
quantities is not universal. On the other hand, the finite-size corrections to the mass gap behave
as for second-order phase transitions. In particular, the curves corresponding to different-size
approximations do not cross in the vicinity of the transition points. The feature is associated to
the existence of a divergent correlation length and holds for a wider class of madels.

1. Introduction

In the last few years there has been renewed activity on the study of first-order phase
transitions motivated in part by some controversies over the behaviour of the renormalization
group in the vicinity of the transition and the criteria to determine the order of a transition
from finite-size analysis. Although there are not many new resuits, two different rigorous
approaches have shed some light on those problems.

For systems with bounded fluctuating variables and absolutely summable real
Hamiltonians it has been rigorously proved that the renormalization group, when properly
defined, is continuous and single-valued across the tramsition surface. The only real
pathologies arise at some points where the renormalization group is not defined at all [1].

On the other hand, a rigorous theory of finite-size scaling has been developed for
systems which admit a representation as contour models with small activities such as the
Ising model at low temperature and the g-state Potts model with large enough ¢ [2]. In
such a case, for large lattices sizes L 3» 1 the partition function can be written as a sum
of terms, each of them giving the contribution of small fluctuations around a pure phase,
plus a remainder, which can be bounded by an exponentially decaying term O(e~*L).
Consequently, the asymptotic behaviour of the extremal points of the specific heat (C,),
Binder-Landau cumuiant ({Ugr) [3],
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and U4 ratio of cumulants,
((E = (EYY
Vs = s
((E = (E)?)
in a d-dimensional system is given in terms of increasing powers of L=¢ plus some
exponentially decaying terms. If Q(L) denotes the value of any of the quantities C,/L¢,

Uy or Ugp in a square lattice of size L and ﬁE(L) the inverse of the temperatures of the
corresponding extremal points, we have the following asymptotic expansions:

(2)

QL) =X T+ XD LY+ L) (3a)
BR(L) = B+ Y§ /L4 + Y IL¥ + O(L7) (3b)

where S is the inverse of the critical temperature. The precise values of the coefficients
{ng}};:u,; {Yg}}g:],z are exactly known for the g-state Potts model for large values of
g [4]. This behaviour bas been verified numerically for the ¢ = 20 Potts model in two-
dimensional lattices [5]. However, in the case of lower g-state Potts models (¢ = 7, 10}
Monte Carlo calculations for square lattices up to size L = 50 are not in agreement with
this ansatz [4]. The disagreement might be due to the fact that the lattice size is not large
enough to reach the asymptotic behaviour, Otherwise, it would mean that the finite-size
effects of these models are not governed by the expansions (3a) and (3b).

In any case, the finite-size expansions (34) and (35) imply that the critical exponent
v = 1/d is in agreement with the value predicted by the discontinuity fixed-point scenario of
the renormalization group behaviour for first-order transitions [6]. Moreover, if Xé(.:) /L #0,
the finite-size analysis becomes similar to that of second-order phase transitions with ¢« = 1
and only the existence of as many critical exponents y = 4 as different phases which can
coexist is the main signal of the first-order transitions [6].

In this note we analyse these probiems in a two-dimensional Abelian gauge model with
a f-term interaction on a lattice. The model is equivalent to the ¢ — co limit of a family
of one-dimensional clock models introduced by two of us [7]. The simplicity of the model
implies that it can be solved exactly and the quantities can be computed exactly without
numerical errors.

2. Finite-size scaling
The partition function of the Z, gauge model in a two-dimensicnal square lattice of size
N x N with periodic boundary conditions is given by

Z(J,e, L)=Tc TV @

where
2 2
Tpy = €XPp {—J cos %(p —-p—ie sin?n(p - p’)] pPr=01..4g9-1 ()

is the transfer matrix, L = N? the number of plaguetes of the lattice, and J and ¢ the real
coupling constants associated, respectively, to the gauge coupling and the @-term interaction
in Wilson’s action [8, 9],

S=JY trRe(Up) +ic »_ tr Im(Up). (6)
P P
The model can also be seen as a one-dimensional g-state clock model [7] and as a chiral

g-state Potts model. Due to the presence of the imaginary terms in the transfer matrix (5),
the model undergoes first-order phase transitions [7].
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The behaviour of the renormalization group for g = 3 and g = 4 agrees with the
discontinuity fixed-point scenario and presents pathologies similar to the Griffiths—Pearce
pathologies [10]. Although the models are very peculiar because of the complex character
of the Hamiltonian, some of cur conclusions are also relevant for models with real-valued
interactions with first-order transitions of infinite correlation length.

In this note we will concentrate on the analysis of the behaviour of finite-size corrections
to the U (1) lattice gauge theory, which corresponds to the g — oc limit. The eigenvalues
of the transfer matrix are [7]

k/2 ]
2n(“"€) TP =@) el <d
J—e

A = Q)

J k2 )
2 (6 +E) e =715 lel>J

J

where [, and J; are the Bessel functions of integer order. If we consider periodic
boundary conditions, only the leading eigenvalue of the transfer matrix is relevant for the
thermodynamic limit. The phase transitions occur at the points (Jf, ¢) of the parameter space
where the leading eigenvalue is degenerate. The energy density is discontinuous at these
points, thus the transitions are first order, although they have a divergent correlation length
& = oo. This unusual feature is due to the complex character of the action. Furthermore, the
critical index v associated to the divergency of the correlation length is v = 1, in agreement
with the discontinuity fixed-point picture for first-order phase transitions [6].

For simplicity we will only consider phase-transition points with J = ¢, but the results
can easily be generalized for all transition points. In this case the eigenvalues of the transfer
matrix (7) read

2 Sk [kt k>0
A =
0 k<0

(8

which implies the existence of first-order phase transitions at the points
JEO = +1 k=0,1,2,.... )]

The mean energy density is given by

I a
u(J, Ly = (E}y = 755 10gZ(J, L) - (10)
where
Z(,Ly=) et =3 )t an
{Pal k20

is the partition function of a periodic chain of length L. In the thermodynamic limit
(L — co) we recover the internal energy density u(J) = (E) = limy0{E) L.

The correlation function of two parallel loops "y ', wrapping the periodic lattice in
opposite directions at a distance m (see figure 1},

1 Do () {)"+ 7]
2 Zkzo (i_f')L

is dominated in that limit (m < L) by the leading eigenvalue {11}

i) +(4)]

(Uf'lUf‘z)L = (12)
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1 1"2

Fignre 1, Two paralle} Wilson loops F; I'» wrapping the periodie Iattice in opposite directions,

where [J] denotes the integer part of J. Near the transition point the correlation function
{Ur, Ur,) has an asymptotic exponentially decaying behaviour

(Ur, - Up,) ~ Ae7#Um (14)
as m goes to oo, with mass gap p(J) given by
[J =78
ply="——ai . S (15)
Je

for |J —J®| « J®, Thus, the correlation length £(J) = p(J)~! diverges as J approaches
the critical point with a critical exponent v = 1.

On the other hand, one can expand (13) around a transition point. Using the analogue
of (14) for finite L. we get an expansion for the mass gap in powers of n = J — J® and
N plus some negligible exponential terms. In the particular case J{® = 1 the result is

nAJ =1+n,L)=2"""?log? 2+ ne~L?[L1og?2 — 2log 2]

+1? [1+ 0] + 0@, 275). (16)
The minimum value of the mass gap
Hain =27 log? 24+ OQ™%) (17)
is reached at the points
L 2
2 V=1 ZaL212 s -L
J(po =1 ¢ log 2(1 Llog2) 0027 (18)

which is in agreement with the results obtained above for the thermodynamic limit L — oo,
In figure 2 we have plotted the function ((J, L) near J for several values of L.
An interesting property of the model is that the derivative of the mass gap with respect
to L is negative near a transition point. In particelar, in a neighborhood of J(®@ we have
du? Lory 2 1
= — log“24log2+0O(mM—; < 0.
il 2?l og"2{log2+ (n)L < (19)
This means that the curves @(J, L} do not intersect each other near the transition point (see
figure 2). This behaviour does not agrees with the picture advocated in {12] to discrirminate
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gure 2. Dependence of the mass gap w{.J, L} on the coupling J in a neighbourhood of
1 for different values of the chain length: L = 20, 25 and 30. For L > 40 the curves
overlap almost perfectly with the thermodynamic result (thicker curve).

between first- and second-order phase transition. In this model the curves u(J, L) which
describe the finite-size approximation to the mass gap do not cross each other in the vicinity
of first-order phase-transition points. Thus, the absence of crossing of these curves cannot
be taken as a signal of second-order phase transition for any statistical-mechanical model.
In fact, it is likely to be associated to the infinite correlation length of the systern irrespective
of the first- or second-order nature of the phase transition. In particular, it can be shown that
the same behaviour arises for all spin models whose lowast energy levels are degenerate with
the only condition that the spin variables must have a non-vanishing correlation between
some of those degenerate eigenstates.

In the thermodynamic limit the specific beat is a non-positive and discontinuous function
of the coupling constant J

C(J) = —[J]. ) L))

The jumps on the specific heat are associated to the different phase transitions.
Near the phase-transition points the finite-size corrections

L Co(d, L) = JPL ({E¥ — (E)}) 1)

can be expanded in terms of powers in 7 = J — J®, 1 /L and exponentially decaying terms
of the form exp(—aL). If we neglect the exponential terms, C,(J® + 5, L) reduces to a
polynomial in 7 with L-dependent coefficients. In-this way we obtain the coupling J(CI™)
where the specific heat C, reaches a maximum value CT™*, The results for J = 1 are
given by

2
JECr)=1- =t O™ (22a)
L 1 1
max _ - -L
ch FR TS +0@2™Y). (22b)

The asymptotic behaviour of those quantities is similar to that obtained for the Potts
model. However, we find a clear difference in J{C;™). The leading correction to J(CM*)
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is O(L™?), instead of @(L™"). In the discontinuity fixed-point interpretation this means
that the shift J(CI'™) - J. does not scale as L=1/%,

Nevertheless, the specific heat behaves as predicted by the Borgs—Kotecky theory, which
is in agreement with a critical exponent = 1. Finally, we note that the value of C, at the
transition point picks up only exponentially small corrections, as observed in [4]

Col,Ly=iL-14+00™"), (23)

This means that the asymptotic regime is reached much faster at the thermodynamic
transition point J =1 than at the finite-size maximal point J{(C]™) (see figure 3).
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Figure 3. Behaviour of the specific heat function C,(J, L) in the same region as in figure 2.
We plot the curves for L = 20, 40 and 80 together with the thermodynamic limit {thicker curve).

Now we examine the behaviour of the Uy(J) ratio of cumulants in a finite chain,
((E = (E)yL)')

Us(J, L) = 2000 (24)
! (E - (EY)?
In the thermodynamic limit it takes the following form:
co J <=l
U(N=13 JI>1 J#£J® (25)

1 J=J® £=012....

The divergency of Uy(J) for J € {0, 1) is due to the fact that the density energy is constant
in this interval. Notice that the value Us(J¥) = 1 agrees with the expected result for
first-order transitions.

Repeating the analysis of finite-size approximation for the {/; ratio of cumulants, we
get the following values for its minimum value:

; 8 4
min __ 12 7 -3
UuM=1 7 Iz +O(L™) (26)

and its position

JUPRY = 1~ 25+ OL™) a@n
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in the vicinity of the transition point J = J{@. Notice that Us < 1 and this property can
never arise for systems with real-valued interactions, but in this case it is generated by the
complex character of the action. The leading correction to the position of the minimum is
again of order (L ~2).

We now repeat the same analysis for the Binder—Landau cumulant,

UsL(J, L) = % (1 - g :; %) ' (28)
which in the thermodynamic limit takes the form *
-0 J <1
U (J) = 1 (10+ 2y J=>1 J# IR 29)

“meareE =R k=0l

The explicit value for Us(J®) can be obtained following [13] and using the fact that the
internal energy at the transition points jumps from k/{k -+ 1) to 1.

The maximum value of the cumulant and its position near J{I = 2 are given by (see
figure 4)
3 35 751

min—"'——a———u.-..

BL ™ 46 32L 172812

i 2log4 | 23+9log4 |,
JUR) =2~ —5—+ =57 — +OL™). (308)

+ O(L™) (30a)

010 ¢
0.07 |
004 - ™
001 F < TN e
E:-0.0Z i
=-0.05
A .
~.0.08 [
011 |
-0.14 F
=017 |
_0.20 1 I L] L L I 1 s T L L L 1 [P 3 1 L I

15 16 17 18 1.9 2j0 21 22 23 24 25

Figure 4, Finite-size behaviour of the Binder—Landau cumuiant Ugr (J, L) near J =2 The

symbol » marks the thermodynamic limit at /{7 = 2.

The leading correction to J(US®) is, amazingly, of order O(L~"), which is in full
agreement with the Borgs—Kotecky theory, but slightly different to the results for the other
cumulants. Tn this model only the Binder~Landau cumulant scales as L=/,
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3. Conclusions

In summary, the values of CJ™*/L9, UF™ and UF™® are in agreement with those associated
to first-order transition points and their finite-size corrections also behave as predicted for
such types of transitions. The complex character of the action only generates some minor
modifications: the specific heat is non-positive and the Uy ratio of cumulants is smaller than
one for some values of J.

The scaling of the position of the minimum of Ugy(J, L) is also in agreement with
the theoretical predictions: the leading correction behaves as L~ = L4, However, the
leading corrections for the extremal points of Uy(J, L) and C,(J, L) are of order L=2. This
behaviour does not impliy the failure of the standard finite-size scaling [14], but simply
means that the leading correction is not universal, because it might depend on the quantity
considered.

Finally, the finite-size approximations to the mass gap in this model do not behave as
for the first-order phase transitions of Ising and Potts models in two dimensions. The mass
gap curves ((J, L) obtained for different sizes of the system do not cross each other in
the vicinity of first-order transition points. Therefore this property cannot be used as an
indicator of the order of the phase transition [12]. It indicates rather the existence of an
infinity-length correlation in the system.
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