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Abstract. We analyse the finite-size scaling of two-dimensional U(1) lattice gauge theories 
with a &term interaction. The finite-size corrections to the specific heat, Binde-Landaa and 
U6 cumulants agree with the expected asymptotic behaviour for first-order phase transitions. 
However, we find that the leading correction to the position of the extremal poin& of these 
quantities is not universal. On the other hand, the finite-size corrections to the mass gap behave 
as for secondader phase transitions. In pardcular, the C U N ~ S  corresponding to different-size 
opproximotions do not cross in the vicinity of the transition points. The feahlre is associated to 
the existence of B divergent correlation length and holds for a wider class of models. 

1. Introduction 

In the last few years there has been renewed activity on the study of first-order phase 
transitions motivated in p q  by some controversies over the behaviour of the renormalization 
group in the vicinity of the transition and the criteria to determine the order of a transition 
from finite-size analysis. Although there are not many new results, two different rigorous 
approaches have shed some light on those problems. 

For systems with bounded fluctuating variables and absolutely summable real 
Hamiltonians it has been rigorously proved that the renormalization group, when properly 
defined, is continuous and single-valued across the transition surface. The only real 
pathologies arise at some points where the renormalization group is not defined at all [l]. 

On the other hand, a rigorous theory of finite-size scaling has been developed for 
systems which admit a representation as contour models with small activities such as the 
Ising model at low temperature and the q-state Potts model with large enough q [2]. In 
such a case, for large lattices sizes L >> 1 the partition function can be written as a sum 
of terms, each of them giving the contribution of small fluctuations around a pure phase, 
plus a remainder, which can be bounded by an exponentially decaying term O(e-bL). 
Consequently, the asymptotic behaviour of the extremal points of the specific heat (CJ, 
Binder-Landau cumulant (&L) [31, 
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and U4 ratio of cumulants, 

in a d-dimensional system is given in terms of increasing powers of L-d plus some 
exponentially decaying terms. If Q(L)  denotes the value of any of the quantities C,/Ld,  
U4 or UBL in a square lattice of size L and B$(L) the inverse of the temperatures of the 
corresponding extremal points, we have the following asymptotic expansions: 

( 3 4  

( 3 4  

Q*(L) = Xg) + X:’/Ld + O(L-2d) 
Bf (L) = .& + Ye (1) / L  d + Y;’/La + o(L-39 

where pc is the inverse of the critical temperature. The precise values of the coefficients 

q [4]. This behaviour has been verified numerically for the q = 20 Potts model in two- 
dimensional lattices [5]. However, in the case of lower q-state Potts models (q  = I, 10) 
Monte Carlo calculations for square lattices up to size L = 50 are not in agreement with 
this ansatz [4]. The disagreement might be due to the fact that the lattice size is not large 
enough to reach the asymptotic behaviour. Otherwise, it would mean that the finite-size 
effects of these models are not governed by the expansions ( 3 4  and (3b). 

In any case, the finitesize expansions ( 3 4  and (3b) imply that the critical exponent 
U = l/d is in agreement with the value predicted by the discontinuity fixed-point scenario of 
the renormalization group behaviour for first-order transitions [6]. Moreover, if X,?5Ld # 0, 
the finite-size analysis becomes similar to that of second-order phase transitions with 01 = 1 
and only the existence of as many critical exponents y = d as different phases which can 
coexist is the main signal of the first-order transitions [6]. 

In this note we analyse these problems in a two-dimensional Abelian gauge model with 
a &term interaction on a lattice. The model is equivalent to the q + CO limit of a family 
of one-dimensional clock models introduced by two of us [7]. The simplicity of the model 
implies that it can be solved exactly and the quantities can be computed exactly without 
numerical errors. 

{ X ~ ) } ~ ~ , ~  {Y, (V )*=1,2 are exactly known for the q-state Pot& model for large values of 

2. Finite-size scaling 

The partition function of the Zq gauge model in a two-dimensional square lattice of size 
N x N with periodic boundary conditions is given by 

(4) 

p , p ’ = O , l ,  ..., q - 1  (5) 

2 ( J ,  E ,  L) =Tr TN2 

where 

Tppr=exp -Jcos-(p-p’)- ie  sin-(p-p’) 

is the transfer matrix, L = N2 the number of plaquetes of the lattice, and J and E the real 
coupling constants associated, respectively, to the gauge coupling and the 6’-term interaction 
in Wilson’s action [8,9], 

1 2n 27l 

I q  4 

S =  J C t r R e ( U p ) + i s C t r I m ( U p ) .  (6) 

The model can also be seen as a one-dimensional q-state clock model [7] and as a c h i d  
q-state Potts model. Due to the presence of the imaginary terms in the transfer matrix (5), 
the model undergoes first-order phase transitions [7]. 

P P 
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The behaviour of the renormalization group for q = 3 and q = 4 agrees with the 
discontinuity fixed-point scenario and presents pathologies similar to the Griffiths-Pearce 
pathologies [IO]. Although the models are very peculiar because of the complex character 
of the Hamiltonian, some of our conclusions are also relevant for models with real-valued 
interactions with first-order transitions of infinite correlation length. 

In this note we will concentrate on the analysis of the behaviour of finitesize corrections 
to the U(1) lattice gauge theory, which corresponds to the q + CO limit. The eigenvalues 
of the transfer matrix are [7] 

where Ik  and Jk are the Bessel functions of integer order. If we consider periodic 
boundary conditions, only the leading eigenvalue of the transfer matrix is relevant for the 
thermodynamic limit. The phase transitions occur at the points ( J ,  E )  of the parameter space 
where the leading eigenvalue is degenerate. The energy density is discontinuous at these 
points, thus the transitions are first order, although they have a divergent correlation length 

= bo. This unusual feature is due to the complex character of the action. Furthermore, the 
critical index U associated to the divergency of the correlation length is U = 1, in agreement 
with the discontinuity fixed-point picture for first-order phase transitions [6]. 

For simplicity we will only consider phase-transition points with'J = E ,  but the results 
can easily be generalized for all transition points. In this case the eigenvalues of the eansfer 
matrix (7) read 

2irJkjk!  k >  0 
k < O  

which implies the existence of first-order phase transitions at the points 

J J k ) = k + l  k = 0 , 1 , 2  ,.... (9) 
The mean energy density is given by 

(10) 
i a  
L aJ u(J, L )  (E),. = -- l O g Z ( J .  L) 

where 

is the parfition function of a periodic chain of length L. In the thermodynamic limit 
( L  + CO) we recover the internal energy density u(J) = ( E )  = limL+=(E)L. 

The correlation function of two parallel loops rl rz wrapping the periodic lattice in 
opposite directions at a distance m (see figure l), 

is dominated in that limit (m < L )  by the leading eigenvalue [ 111 
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Fiyre 1. Two parallel Wilson loops l-2 wrapping the periodic lattice in opposite directions. 

where [ J ]  denotes the integer part of J .  Near the transition point the correlation function 
(Ur, Ur,) has an asymptotic exponentially decaying behaviour 

(14) (U,, . Ur2) - A 
as m goes to CO, with mass gap p ( J )  given by 

for IJ - JLk)I << Jik). Thus, the correlation length e ( J )  = p(J)-' diverges as J approaches 
the critical point with a critical exponent v = 1. 

On the other hand, one can expand (13) around a transition point. Using the analogue 
of (14) for finite L we get an expansion for the mass gap in powers of q = J - Jik) and 
N plus some negligible exponential terms. In the particular case JJo) = 1 the result is 
p2(5= 1 + 7 ,  ~ ) = z - ' / ~ l o g ~ 2 + ~ e - ~ / ~ [ ~ l o g ~ 2 - ~ i o g 2 ]  

The minimum value of the mass gap 
+72[1+ o(Z-''z)] + O(q3,2-'). (16) 

&" = 2-'"10g22 + o(2-L) (17) 
is reached at the points 

which is in agreement with the results obtained above for the thermodynamic limit L -+ CO. 

In figure 2 we have plotted the function p ( J ,  L) near JJo) for several values of L. 
An interesting property of the model is that the derivative of the mass gap with respect 

to L is negative near a transition point. In particular, in a neighborhood of JJ") we have 

This means that the curves p ( J ,  L) do not intersect each other near the transition point (see 
figure 2). This behaviour does not agrees with the picture advocated in [I21 to discriminate 
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I 

Fi 2. Dependence of the mass gap p ( J .  L) on the coupling J in a neighbourhood of 
Jc - 1 for different values of the chain length: L = 20, 25 and 30. For L > 40 the cwes 
overlap almost perfectly with the thermodynamic result (thicker curve). 

between first- and second-order phase transition. In this model the curves p(J, L) which 
describe the finite-size approximation to the mass gap do not cross each other in the vicinity 
of first-order phasetransition points. Thus, the absence of crossing of these curves cannot 
be taken as a signal of second-order phase transition for any statistical-mechanical model. 
In fact, it is likely to be associated to the infinite correlation length of the system irrespective 
of the first- or second-order nature of the phase transition. In particular, it can be shown that 
the same behaviour arises for all spin models whose lowest energy levels are degenerate with 
the only condition that.the .spin variables must have a non-vanishing correlation between 
some of those degenerate eigenstates. 

In the thermodynamic limit the specific heat is a non-positive and discontinuous function 
of the coupling constant J 

C , ( J )  -[J]. (20) 
The jumps on the specific heat are associated to the different phase transitions. 

Near the phasetransition points the finite-size corrections 

c,(J, L )  = J ~ L  ( ( E ~ ) '  - (E):) (21) 

can be expanded in terms of powers in 9 = J - JJ'), 1/L and exponentially decaying terms 
of the form exp(-aL). If we neglect the exponential terms, C,(Jik) + q, L) reduces to a 
polynomial in q with L-dependent coefficients. In~this way we obtain the coupling J(CFaX) 
where the specific heat C, reaches a maximum value CFa. The results for~JJo) = 1 are 
given by 

2 
L2 

J(CVm) = 1 - - + 0(L-4) ( 2 W  

('W 
The asymptotic behaviour of those quantities is similar to that obtained for the Potts 

model. However, we find a clear difference in J(C:m). The leading correction to .!(Cum-) 

L 1 1  + - 4L + q 2 - 9 .  
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is O(L-’), instead of U(L-’). In the discontinuity fixed-point interpretation this means 
that !he shift J(CFox) - Jc does not scale as L-’/”. 

Nevertheless, the specific heat behaves as predicted by theBorgs-Koteckf theory, which 
is in agreement with a critical exponent M = 1. Finally, we note that the value of C, at the 
transition point picks up only exponentially small corrections, as observed in [4] 

C“(1, L )  = $ L  - 4 + U ( 2 4 ) .  (23) 
This means that the asymptotic regime is reached much faster at !he lhermodynamic 
transition point J = 1 than at the finite-size maximal point J(CFa) (see figure 3). 

1 

Figure 3. Behaviour of the specific heat function C,(J. L) in the same region as in figure 2. 
We plot the curves for L = 20,40 md 80 together with the thermodynamic limit (Uticker curve). 

Now we examine the behaviour of the &(.I) ratio of cumulants in a finite chain, 

In !he thermodynamic l i i i t  it takes !he following form: 
00 J c 1  

1 J = J i k )  k = 0 , 1 , 2 , . .  
3 J > 1 J # JLk’ 

The divergency of U4(J)  for J E [O, 1) is due to the fact that the density energy is constant 
in this interval. Notice that the value V4(JLk)) = 1 agrees with !he expected result for 
first-order transitions. 

Repeating the analysis of finite-size approximation for the U4 ratio of cumulants, we 
get the following values for its minimum value: 

(26) 
8 4  
L L’ 

4 
L* 

U T  = 1 - - -- + O(L-3) 

J(U,min) = 1 - - + u(L-3) 

and its position 

(27) 
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in the vicinity of the transition point J = J;"). Notice that U, i 1 and this property can 
never arise for systems with real-valued interactions, but in this case it is generated by the 
complex character of the action. The leading correction to the position of the minimum is 
again of order U(L-'). 

We now repeat the same analysis for the Binder-Landau cnmulant, 

which in the thermodynamic limit takes the form 

The~explicit value for UBI+(&@)) can be obtained following [13] and using the fact that the 
internal energy at the transition points jumps from k f (k + 1)  to 1. 

The maximum value of the cumulant and its position near J$)  = 2 are given by (see 
figure 4) 

21og4 23+910gz4 ' + O(L-3). 
+ 9L2 

J ( U g )  = 2 - - 
L 

0.1 0 

0.07 

0.04 

0.01 

3-o.02 

%0.05 

3-0.08 

-0.11 

-0.14 

-0.17 

-0.20 
1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 

J 

Figure 4. Finite-size behaviour of the Binder-Landau cumulant U~L(J. L)  near J!" = 2. The 
symbol . marks the thermodynamic limit at J:') = 2. 

The leading correction to J ( U E )  is, amazingly, of order O(L-'), which is in full 
agreement with the Borgs-Koteckg theory, but slightly different to the results for the other 
cumulants. In this model only the Binder-Landau cumulant scales as L-"". 
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3. Conclusions 

In summary, the values of C y / L d ,  U;? and UT’” are in agreement with those associated 
to first-order transition points and their finite-size corrections also behave as predicted for 
such types of transitions. The complex character of the action only generates some minor 
modifications: the specific heat is non-positive and the U4 ratio of cumulants is smaller than 
one for some values of J .  

The scaling of the position of the minimum of UBL(J .  t) is also in agreement with 
the theoretical predictions: the leading correction behaves as L-’/“ = L4. However, the 
leiding corrections for the extremal points of U&, t) and C,(J ,  L) are of order L-z. This 
behaviour does not impliy the failure of the standard finite-size scaling 1141, but simply 
means that the leading correction is not universal, because it might depend on the quantity 
considered. 

Finally, the finite-size approximations to the mass gap in this model do not behave as 
for the first-order phase transitions of king and Potts models in two dimensions. The mass 
gap curves p(J ,  L) obtained for different sizes of the system do not cross each other in 
the vicinity of first-order transition points. Therefore this property cannot be used as an 
indicator of the order of the phase transition [12]. It indicates rather the existence of an 
infinity-length correlation in the system. 
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